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Abstract. Using an ensemble of classifiers instead of a single classifier
has been shown to improve generalization performance in many machine
learning problems [4, 16]. However, the extent of such improvement de-
pends greatly on the amount of correlation among the errors of the base
classifiers [1,14]. As such, reducing those correlations while keeping the
base classifiers’ performance levels high is a promising research topic.
In this paper, we describe input decimation, a method that decouples
the base classifiers by training them with different subsets of the input
features. In past work [15], we showed the theoretical benefits of input
decimation and presented its application to a handful of real data sets.
In this paper, we provide a systematic study of input decimation on syn-
thetic data sets and analyze how the interaction between correlation and
performance in base classifiers affects ensemble performance.

1 Introduction

Using an ensemble of classifiers instead of a single classifier has been repeatedly
shown to improve generalization performance in many machine learning prob-
lems [4,16]. It is well-known that, in order to obtain such improvement, one
needs to simultaneously maintain a reasonable level of performance in the base
classifiers that constitute the ensemble and reduce their correlations. There are
many ensemble methods that actively promote diversity (i.e., lower correlations
in the outputs) among their base classifiers. Bagging [4], boosting [7], and cross-
validation partitioning [9,14] generate diverse base classifiers by training with
different subsets of the training set. Error-correcting output codes [5] generate
new training sets with different class labels and use these different training sets
to generate base classifiers. Merz [10] use Principal Component Analysis [8] to
measure the correlations among the base models and combine them accordingly.
Dietterich [6] combines decision trees in which each test is chosen at random
among the 20 best tests.



Most work in this field, however, focuses on pattern-level selection (e.g., Bag-
ging, Boosting). Input Decimation (ID) on the other hand is a feature selec-
tion method that generates different subsets of the input features for each of the
classifiers in the ensemble. By training each base classifier with a different fea-
ture subset, the correlations among the base classifiers are reduced. (Note that
input decimation can be used in conjunction with pattern-based ensemble meth-
ods such as bagging and boosting, as discussed in Section 3.) Input decimation
is different from most other dimensionality reduction methods that are widely
used, including PCA, in that it generates different feature subsets for different
classifiers. On the other hand, PCA aims to maximize the variability among the
newly constructed features, but makes no provisions on how that variability is
related to class information (see [11] for details).

In this work we explore using class information to reduce the dimensionality
of the feature space presented to each base classifier. While strong ensemble
performance was expected, input decimation also provided improvements in the
base classifiers by pruning irrelevant features, thereby simplifying the learning
problem faced by each base classifier. Consequently, Input Decimated Ensembles
(IDEs) significantly outperformed both base classifiers trained on the full feature
space as well as ensembles of such classifiers. In the next section we briefly
highlight the need for correlation reduction in ensembles. We then present the
input decimation algorithm, along with results on synthetic data sets.

2 Correlation and Ensemble Performance

In this article we focus on classifiers that model the a posteriori probabili-
ties of the output classes. Such algorithms include Bayesian methods [3], and
properly trained feed forward neural networks such as Multi-Layer Perceptrons
(MLPs) [12]. We can model the ith output of such a classifier as follows (details
of this derivation are in [13, 14]):

fi(z) = P(Ci|z) + ni(z),

where P(C;|z) is the posterior probability of the ith class given instance z, and
n;(z) is the error associated with the ith output. Given an input z, if we have
one classifier, we classify  as being in the class ¢ whose value f;(z) is largest.
Instead, if we use an ensemble that calculates the arithmetic average over
the outputs of N classifiers f*(z) , m € {1,..., N}, then P(C;|z) is given by:
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and 7™ (z) is the error associated with the ith output of the mth classifier.
Now, the variance of 7j;(z) is given by [14]:
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If we express the covariances in terms of the correlations (cov(z,y) = corr(z,y)oz0y),
assume the same variance 072” across classifiers, and use the average correlation
factor among classifiers, §;, given by
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Based on this variance, we can compute the variance of the decision boundary
and, generalizing this result to the classifier error, we obtain the relationship
between the model error (beyond the Bayes error) of the ensemble (E%“, )and
that of an individual classifier (E2%¢, ;) [13,14]:
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and P; is the prior probability of class i.

Equation 4 quantifies the connection between error reduction and the correla-
tion among the errors of the base classifiers. This result leads us to seek to reduce
the correlation among classifiers prior to using them in an ensemble. In the next
section we present the input decimation concept which merges dimensionality
reduction and correlation reduction to provide classifier ensembles.

3 The Input Decimated Ensembles

Input decimation decouples the classifiers by exposing them to different aspects
of the same data by selecting features most correlated with a particular class.
ID trains L classifiers, one corresponding to each class in an L-class problem?.
For each classifier, the method selects a user-determined number of the input

! More generally, one trains nL classifiers where n is an integer.



features having the highest absolute correlation to the presence or absence of

the corresponding class?. The objective is to “weed” out input features that do

not carry strong discriminating information for a particular class, and thereby

reduce the dimensionality of the feature space to facilitate the learning process.
Let the training set take the following form:

{(x1,¥1), (x2,¥2);-- -, (Xm,¥ym) },

where m is the number of training examples. Each x; has ||F'S|| elements (where
F'S is the set of input features) representing the values of the input features in
example i. Each y; represents the class using a distributed encoding, i.e., it has
L elements, where L is the number of classes, y; = 1 if example ¢ is an instance
of class [ and y; = 0 if example ¢ is not an instance of class [. In this study our
base classifiers consist of MLPs trained with the backpropagation algorithm?®.

Given such a data set, and a base classifier learning algorithm, input deci-
mated ensembles operate as follows:

— For each class I € {1,2,...,L},

1. Compute the absolute value of the correlation between each feature j
(x5 for all patterns i) and the output for class I (yq for all patterns i).

2. Select the n; features having the highest absolute correlation, resulting
in new feature set F'S;. One can either predetermine n; based on prior
information about the data set, or learn the value to optimizes perfor-
mance.

3. Construct a new training set by retaining only those elements of the x;’s
corresponding to the features F'S; and all the outputs.

4. Call the base classifier learning algorithm on this new training set. Call
the resulting classifier f'.

Given a new example z, we classify it as follows:

— For each class k € {1,2,...,L}, calculate f"¢(z) = %Zle fi(z), by pre-
senting the proper feature sets (F'S;) to each of the L classifiers.
— Return the class K = argmazy f7'¢ ().

Fundamentally, input decimation seeks to reduce the correlations among in-
dividual classifiers by using different subsets of input features, while methods
such as bagging and boosting attempt to do so by choosing different subsets
of training patterns. These facts imply that input decimation is orthogonal to
pattern-based methods such as bagging and boosting, i.e., one can use input
decimation in conjunction with pattern-based methods, and directly comparing

2 Note that this method requires the problem to have at least three classes. In a
two-class problem, features strongly correlated with one class will be strongly anti-
correlated with the other class, so the same features would be chosen for both clas-
sifiers.

3 In principle, any learning algorithm that estimates the a posteriori class probabilities
can be used.



input decimation to bagging or boosting serves little purpose. Rather one should
compare input decimated ensembles to original ensembles (which is done here)
or input decimated, bagged ensembles to bagging alone (which we are currently
investigating).

4 Experimental Results

In this section, we present the results of input decimation on synthetic datasets.
As discussed above, our base classifiers are multi-layer perceptrons. In this work
all such classifiers contain a single hidden layer and the learning rate, momentum
term, and number of hidden units were experimentally determined?.

As a standard against which to compare our input decimation results, we also
trained a classifier on the full feature set (referred to as the “original single clas-
sifier”) and separately trained L copies of the same classifier and incorporated
them into an averaging ensemble (referred to as the “original ensemble”). As an-
ticipated, the original ensemble often performs significantly better than each of
its base classifiers. Comparing input-decimated ensembles with these original en-
sembles isolates the benefits of removing input features from the base classifiers.
Because PCA is a standard dimensionality reduction method, we also compare
input decimated ensembles to PCA ensembles (i.e., ensembles where each con-
stituent classifier was trained on a preselected set of the principal components
of the feature space).

In these experiments, we used the following three synthetic datasets:

— Set 1:
e Three classes—one unimodal Gaussian per class.
e 300 training patterns and 150 test patterns—100 training and 50 test
patterns per class.
e 100 features per pattern where there are:

x 10 relevant features per class—each class’s instances are generated
from a multivariate normal distribution in 10 independent dimen-
sions distributed as N (40, 5%). There are no dimensions in common
among the three classes. Therefore, there are 30 relevant features.
For instances of each class, the 20 features that are relevant to the
other two classes are distributed as U[—100,100].5

% 70 irrelevant features—distributed as U[—100, 100].

— Set 2: Same as Set 1, except that only 50 irrelevant features were added to
the 30 relevant features, for a total of 80 features in the dataset.

— Set 3: Same as Set 1, except that there is overlap among the relevant features
for each class (e.g., classes have three relevant features in common).

* We experimented on a single neural network with all input features by trying learning
rates and momentum terms in increments of 0.05 and hidden units in increments of
5 until the performance began to decline.

5 Clearly, because of this, all 30 features have some relevance to all three classes; how-
ever, the 10 features used to generate each class’s instances are clearly substantially
more relevant than the other 20 features.
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In dataset 1 there is an abundance of features that are irrelevant for the clas-
sification task. This data set was chosen to represent large data mining problems
where the algorithms may get swamped by irrelevant data. Dataset 2 has fewer
irrelevant features and was chosen to illustrate the performance of input deci-
mation as a function of irrelevant information present in the feature space. By
reducing the amount of noise in the feature space, the problem is subtly mod-
ified: selecting the relevant features is now easier, but the effect of removing
the irrelevant features on the base classifiers’ performance is reduced. Finally,
dataset 3 was chosen to have overlap among the features relevant to each class.
This provides a more difficult problem where the base classifiers are now forced
to select some common features, reducing the potential for correlation reduction.

4.1 Synthetic Set 1

Figures 1 and 2 present the classification accuracies and base classifier corre-
lations, respectively as a function of the number of inputs (which are either
the number of selected principal components or the number of features selected
for each base classifier through input decimation). The original single classifier
and original ensemble use all the input features®. The points for the maximum
number of features (e.g., 100 features in this dataset), always represent the per-
formance of the original classifier /ensemble.

An important observation that is apparent from these results is that neither
PCA ensembles nor PCA base classifiers are particularly sensitive to the number
of inputs. The correlations among the base classifiers reinforce this conclusion.
Fewer input features in PCA means the base classifiers are more correlated since
they all share the same principal features. Note however, that input decimated
base classifiers have little correlation for small numbers of features, increasing
correlation up to 30 features, and decreasing correlation after that. The base
classifiers’ average performance follows a similar pattern. Interestingly though,

5 The base classifier used was an MLP with a single hidden layer consisting of 95 units,
trained using a learning rate of 0.2 and a momentum term of 0.5.



input decimated ensembles are not adversely affected by the poor performance of
the base classifiers (e.g., input decimated ensembles with 5 features outperformed
input decimated ensembles with 50 features while base classifiers with 5 features
gave significantly worse results than base classifiers with 50 features).

In cases where more than 30 features were used, the performance of the
ensemble declined with the addition of additional features, i.e., as more and more
irrelevant features were included. However, all the input decimation ensembles
provided statistically significant improvements over the original ensembles and
PCA ensembles.

The single decimated classifiers with 20 and more features outperformed
the original single classifier. This perhaps surprising result (as one might have
expected only the ensemble performance to improve when using subsets of the
features) is mainly due to the simplification of the learning tasks, which allows
the classifiers to learn the mapping more efficiently.

Interestingly, the average correlation among classifiers does not decrease un-
til a very small number of features remain. We attribute this to the removal
of noise—removing noise increases the amount of information shared between
the base classifiers. Indeed, the correlation increases steadily as features are re-
moved until we reach 30 features (which corresponds to the actual number of
relevant features). After that point, removing features reduces the correlation
and the individual classifier performances. However, the ensemble performance
still remains high. This experiment clearly shows a typical trade-off in ensemble
learning: one can either increase individual classifier performance (as for input
decimation with more than 30 features) or reduce the correlation among classi-
fiers (as for input decimation with less than 20 features) to improve ensemble
performance.

4.2 Synthetic Set 2

Figures 3 and 4 present the classification accuracies and base classifier corre-
lations, respectively, for the second data set which is obtained by reducing the
number of irrelevant features (from 70 to 50) from the first dataset”. The dec-
imated ensembles with 5 and 70 features marginally outperformed the original
ensemble and PCA-based ensemble, while the remaining ones performed signifi-
cantly better. Note that, just as it was for the first data set, the input decimated
single classifiers with 20 or more features outperformed the single original clas-
sifier. This demonstrates that if the feature set is noisy (an assumption that
almost always holds in the real world) improvements are achieved through di-
mensionality reduction alone.

4.3 Synthetic Set 3

Figures 5 and 6 present the results for the third data set, which is similar to
the first dataset except that there is overlap among the relevant features for the

" The single classifier used was an MLP with a single hidden layer consisting of 65
units, trained using a learning rate of 0.2 and a momentum term of 0.5.
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classes.? Because of this overlap, this feature set has fewer total relevant features
and thus it constitutes a more difficult problem (as indicated by comparing the
results on the full feature classifiers and ensembles on this dataset to the previous
ones).

Note that the correlations in this data set remained fairly constant across
the board. Unlike results shown in Figure 2, input decimation did not reduce
correlations dramatically for small feature sets. This is mainly caused by the
“coupling” among the features (i.e., the presence of features that are essential
to many classes due to the overlap).

In spite of these difficulties, input decimation ensembles perform extremely
well. Indeed, they significantly outperform both the original ensemble and PCA
ensembles on all but a few subsets where they only provide marginal improve-
ments. Furthermore the input-decimated single classifiers also outperform their
original and PCA counterparts for all but the 60 and 70 feature subsets. This is
particularly heartening since this feature set is a more representative abstraction

8 The single classifier used was an MLP with a single hidden layer consisting of 95
units, trained using a learning rate of 0.2 and a momentum term of 0.5.



of real data sets (data sets with “clean” separation among classes are quite rare).
This experiment demonstrates that when there is overlap among classes, class
information becomes particularly relevant. PCA operates without this vital in-
formation, therefore it cannot provide any statistically significant improvements
over the original classifiers and ensembles.

5 Discussion

This paper discusses input decimation, a dimensionality reduction-based en-
semble method that provides good generalization by reducing the correlations
among the classifiers in the ensemble. Through controlled experiments, we show
that the input decimated single classifiers outperform the single original clas-
sifiers (trained on the full feature set), demonstrating that simply eliminating
irrelevant features can improve performance®. In addition, eliminating irrelevant
features in each of many classifiers using different relevance criteria (in this
case, relevance with respect to different classes) yields significant improvement
in ensemble performance, as seen by comparing our decimated ensembles to
the original ensembles. Selecting the features using class label information also
provides significant performance gains over PCA-based ensembles.'?

Through our tests on synthetic datasets, we examined the characteristics
that datasets need to have to fully benefit from input decimation. We observed
that input decimation performs best when (i) there are a large number of fea-
tures (i.e., where it’s likely that there will be irrelevant features); and (ii) when
the number of training examples is relatively small (i.e., where it’s difficult to
properly learn all the parameters in a classifier based on the full feature set).
In both cases, by removing the extraneous features, input decimation reduces
noise and thereby reduces the number of training examples needed to produce
a meaningful model (i.e., alleviating the curse of dimensionality). Our synthetic
datasets were generated using multivariate distributions where the feature val-
ues were generated independently. We plan to generate synthetic datasets with
dependencies among the features to see how they affect our method.

Note that input decimation shares the central aim of generating a diverse
pool of classifiers for the ensemble with many methods, and most notably with
bagging. However, by focusing on the input features rather than the input pat-
terns, input decimation focuses on a different “axis” of correlation reduction
than does bagging. Consequently, input decimation is orthogonal to bagging,
and one can use input decimation in conjunction with bagging.

A final observation is that input decimation works well in spite of our rather
crude method of feature selection (i.e., using statistical correlation of each fea-
ture individually with each class). One reason why this simple method succeeds

9 Although this result is perplexing from an information theory perspective, it is con-
sistent with learning theory: by removing features we simplify the learning task and
thus allow the base classifiers to reach their “peak” performance.

0 Furthermore, IDEs also outperform random feature subset selection [2,17] on real
datasets [15].



is that we have greatly simplified the relevance criterion: unlike other feature
selection methods that consider the discriminatory ability across all classes, we
only consider the relevance of the features to a single class. This typically causes
each classifier in the ensemble to get a different subset of features, leading to
the superior performance we have demonstrated. Nevertheless, we are currently
extending this work in three directions: considering cross-correlations among the
features; investigating mutual information-based relevance criteria; and incorpo-
rating global relevance into the selection process.
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